Object-based anisotropic mislocalization by retinotopic motion signals
نویسندگان
چکیده
The relative visual positions of briefly flashed stimuli are systematically modified in the presence of motion signals. We have recently shown that the perceived position of a spatially extended flash stimulus is anisotropically shifted toward a single convergent point back along the trajectory of a moving object without a significant change in the perceived shape of the flash [Watanabe, K., & Yokoi, K. (2006). Object-based anisotropies in the flash-lag effect. Psychological Science, 17, 728-735]. In the previous experiment, the moving stimulus moved in both retinotopic and environmental coordinates. In the present study, we examined whether the anisotropic mislocalization depends on retinotopic or object motion signals. When the retinal image of a moving stimulus was rendered stationary by smooth pursuit, the anisotropic pattern of mislocalization was not observed. In contrast, when the retinal image of a stationary stimulus was moved by eye movements, anisotropic mislocalization was observed, with the magnitude of the mislocalization comparable to that in the previous study. In both cases, there was little indication of shape distortion of the flash stimulus. These results demonstrate a clear case of object-based mislocalization by retinotopic motion signals; retinotopic--not object--motion signals distort the perceived positions of visual objects after the shape representations are established.
منابع مشابه
Localizing Non-Retinotopically Moving Objects
How does the brain determine the position of moving objects? It turns out to be rather complex to answer this question when we realize that the brain has to solve the motion correspondence problem in two kinds of reference frames: Retinotopic and non-retinotopic ones. We show that visual objects are mislocalized along a non-retinotopic motion direction. Observers viewed two successive movie fra...
متن کاملDynamic distortion of visual position representation around moving objects.
The relative visual positions of briefly flashed stimuli are systematically modified in the presence of motion signals (R. Nijhawan, 2002; D. Whitney, 2002). Previously, we investigated the two-dimensional distortion of relative-position representations between moving and flashed stimuli. The results showed that the perceived position of a flash is not uniformly displaced but shifted toward a s...
متن کاملDoes Area V3A Predict Positions of Moving Objects?
A gradually fading moving object is perceived to disappear at positions beyond its luminance detection threshold, whereas abrupt offsets are usually localized accurately. What role does retinotopic activity in visual cortex play in this motion-induced mislocalization of the endpoint of fading objects? Using functional magnetic resonance imaging (fMRI), we localized regions of interest (ROIs) in...
متن کاملPresaccadic motion integration between current and future retinotopic locations of attended objects.
Object tracking across eye movements is thought to rely on presaccadic updating of attention between the object's current and its "remapped" location (i.e., the postsaccadic retinotopic location). We report evidence for a bifocal, presaccadic sampling between these two positions. While preparing a saccade, participants viewed four spatially separated random dot kinematograms, one of which was c...
متن کاملAsymmetry in visual cortical circuits underlying motion-induced perceptual mislocalization.
Motion signals in the visual field can cause strong biases in the perceived positions of stationary objects. Local motion signal within an object induces a shift in the perceived object position in the direction of motion, whereas adaptation to motion stimuli causes a perceptual shift in the opposite direction. The neural mechanisms underlying these illusions are poorly understood. Here we repo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Vision Research
دوره 47 شماره
صفحات -
تاریخ انتشار 2007